Human - computer interaction
Human-computer interaction is developing rapidly according to today's technology . Here is some brief theory behind that.
It covers human-computer interface design and focused techniques that allow computers to understand people (detect emotions, intent, level of skill), as well as the design of human-facing software (social networks) and hardware (talking smart-phones and self-driving cars).
The Association for Computing Machinery (ACM) defines human-computer interaction as "a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them". An important facet of HCI is the securing of user satisfaction (or simply End User Computing Satisfaction).
"Because human–computer interaction studies a human and a machine in communication, it draws from supporting knowledge on both the machine and the human side. On the machine side, techniques in computer graphics, operating systems, programming languages, and development environments are relevant. On the human side, communication theory, graphic and industrial design disciplines, linguistics, social sciences, cognitive psychology, social psychology, and human factors such as computer user satisfaction are relevant. And, of course, engineering and design methods are relevant."] Due to the multidisciplinary nature of HCI, people with different backgrounds contribute to its success. HCI is also sometimes termed human–machine interaction (HMI), man–machine interaction (MMI) or computer–human interaction (CHI).
Goals
Human–computer interaction studies the ways in which humans make, or don't make, use of computational artifacts, systems and infrastructures. In doing so, much of the research in the field seeks to improve human-computer interaction by improving the usability of computer interfaces.How usability is to be precisely understood, how it relates to other social and cultural values and when it is, and when it may not be a desirable property of computer interfaces is increasingly debated.Much of the research in the field of human-computer interaction takes an interest in:
- Methods for designing novel computer interfaces, thereby optimizing a design for a desired property such as, e.g., learnability or efficiency of use.
- Methods for implementing interfaces, e.g., by means of software libraries.
- Methods for evaluating and comparing interfaces with respect to their usability and other desirable properties.
- Methods for studying human computer use and its sociocultural implications more broadly.
- Models and theories of human computer use as well as conceptual frameworks for the design of computer interfaces, such as, e.g., cognitivist user models, Activity Theory or ethnomethodological accounts of human computer use.
- Perspectives that critically reflect upon the values that underlie computational design, computer use and HCI research practice
Researchers in HCI are interested in developing new design methodologies, experimenting with new devices, prototyping new software and hardware systems, exploring new interaction paradigms, and developing models and theories of interaction.
Human–computer interface
Main article: User interface
The
human–computer interface can be described as the point of communication
between the human user and the computer. The flow of information
between the human and computer is defined as the loop of interaction. The loop of interaction has several aspects to it, including:- Visual Based :The visual based human computer inter-action is probably the most widespread area in HCI research.
- Audio Based : The audio based interaction between a computer and a human is another important area of in HCI systems. This area deals with information acquired by different audio signals.
- Task environment: The conditions and goals set upon the user.
- Machine environment: The environment that the computer is connected to, e.g. a laptop in a college student's dorm room.
- Areas of the interface: Non-overlapping areas involve processes of the human and computer not pertaining to their interaction. Meanwhile, the overlapping areas only concern themselves with the processes pertaining to their interaction.
- Input flow: The flow of information that begins in the task environment, when the user has some task that requires using their computer.
- Output: The flow of information that originates in the machine environment.
- Feedback: Loops through the interface that evaluate, moderate, and confirm processes as they pass from the human through the interface to the computer and back.
- Fit: This is the match between the computer design, the user and the task to optimize the human resources needed to accomplish the task.
Comments
Post a Comment